R-1115K

耐圧トランス

取扱説明書

第1版

本器を末永くご愛用いただくために、ご使用の前にこの取扱説明書をよくお読みのうえ、正しい方法でご使用ください。

尚、この取扱説明書は、必要なときにいつでも取り出せるように大切に保存してください。

NOTE:

従来型マルチリレーテスタ IP-R1DとR-1115Kを組合わせてご使用いただく場合は、IP-R1Dの本体に付属しております、PUN用(耐圧試験用)ヒューズ「10A」を「15A」に変更する必要がございます。

詳しくは、弊社営業担当者へお問合せください。

安全にご使用いただくために

ご注意

- ・ この取扱説明書をよくお読みになり、内容を理解してからご使用ください。
- ・ 本書は、再発行致しませんので、大切に保管してください。
- ・ 製品の本来の使用法及び、取扱説明書に規定した方法以外での使い方に対しては、安全性の保証はできません。
- ・ 取扱説明書に記載された内容は、製品の性能、機能向上などによって将来予告なしに変更することがあります。
- ・ 取扱説明書に記載された絵、図は、実際のものと異なる場合があります。また一部省略したり、抽象化して表現している場合があります。
- ・ 取扱説明書の内容に関して万全を期していますが、不審な点や誤り記載漏れなどにお気づき の時は、技術サービスまでご連絡ください。
- ・ 取扱説明書の全部または、一部を無断で転載、複製することを禁止します。
- カスタマーサービスをよくお読みください。

使用している表示と絵記号の意味

■ 警告表示の意味

警 告

警告表示とは、ある状況または操作が死亡を引き起こす危険性があることを 警告するために使用されます。

注音

注意表示とは、ある状況または操作が機械、そのデータ、他の機器、財産に害を及ぼす危険性があることを注意するために使用されます。

NOTE

注記表示とは、特定の情報に注意を喚起するために使用されます。

■ 絵記号の意味

警告、注意を促す記号です。

禁止事項を示す記号です。

必ず実行しなければならない行為を示す記号です。

安全上のご注意 必ずお守りください

感電や人的傷害を避けるため、以下の注意事項を厳守してください。

本器は最大11000Vの高電圧を発生します。 必ず、高圧用ゴム手袋を着用して操作してください。

強制

感電の原因となる場合があります。

高圧電気設備の断路器を操作するときは、必ず高圧用ゴム手袋を着用し、フック棒 を使用して操作してください。

強制

感電の原因となる場合があります。

絶縁耐力試験は、高電圧による試験を行うため大変危険です。試験関係者を含め、 関係者以外にも注意を促す安全処置を講じてください。

強制

感電の原因となる場合があります。

取扱い説明書の仕様・定格を確認の上、定格値を超えてのご使用は避けてください。 使用者への危害や損害また製品の故障につながります。

禁止

接続ケーブル等(電源コードを含む)は使用する前に必ず点検(断線、接触不良、 被覆の破れ等)してください。点検して異常のある場合は、絶対に使用しないでく

強制

使用者への危害や損害また製品の故障につながります。

本器を結露状態または水滴のかかる所で使用しないでください。

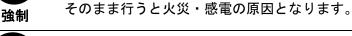
故障の原因となります。また製品の性能が保証されません。

禁止

本器と被試験物とを接続する場合は必ず、被試験物が活動状態か停電している状態 かを検電器等で確認してから接続してください。

強制

感電の原因となる場合があります。



カバーをあけたり、改造したりしないでください。 製品の性能が保証されません。

分解禁止

設置、計測中に電源ブレーカーが切れた場合、切れた原因を明確にして、その原因 を取り除いてから試験を再開してください。

被試験物にEARTH(アース)端子がある場合、必ず接地してください。 感電の原因となる場合があります。

アース線接続

接続する時、試験を行う時は、電気知識を有する専門の人が行ってください。 専門の知識や技術がない方が行うと危害や損害を起こす原因となる場合がありま す。

安全上のご注意 必ずお守りください

本器または被試験装置の損傷を防ぐため、記載事項を守ってください。

被試験物の絶縁抵抗値が低い場合は、絶縁耐力試験を行わないでください。被試験物を損傷します。

落下させたり、堅いものにぶつけないでください。 製品の性能が保証されません。故障の原因になります。

本器の清掃には、薬品 (シンナー、アセトン等) を使用しないでください。 カバーの変色、変形を起こす原因となります。

接続ケーブルの取り外しは、コード自体を引っ張らずにロックを緩めてからコネクタ部を持って外してください。

コード自体を引っ張るとコードに傷がつき、誤動作、感電の原因となる場合があります。

発電機を使用する場合は、本器の定格に合わせて余裕のある発電機をご使用ください。

製品の性能が保証されません。

保管は、60℃以上の高温の所または、-20℃以下の低温の所及び、多湿な所をさけてください。また直射日光の当たる所もさけてください。 故障の原因となります。

ゆるいコンセントに電源コードを差し込んで運転しないでください。 製品の性能が保証されません。

電源ドラムから電源をとる場合、コードの長さ(距離)に注意してください。 製品の性能が保証されません。

製品の開梱

本器到着時の点検

本器がお手元に届きましたら、輸送中において異常または破損や紛失物がないか点検してからご使用ください。

万一、損傷等の異常がある場合には、お手数ですが弊社最寄りの支店・営業所またはお買い求めの取扱店へご連絡ください。

製品の開梱

次の手順で開梱してください。

Providence of the Control of the Con		
手 順	作業	
1	梱包箱内の書類等を取り出してください。	
2	製品を梱包箱から注意しながら取り出してください。	
3	梱包箱内の全ての付属品を取り出し、標準装備の付属品が全 て含まれていることをご確認ください。	

免責事項について

●本商品は、電圧、電流を出力、計測をする製品で、電気配線、電気機器、電気設備などの試験、測定器です。試験、測定に関わる専門的電気知識及び技能を持たない作業者の誤った測定による感電事故、被測定物の破損などについては弊社では一切責任を負いかねます。

本商品により測定、試験を行う作業者には、労働安全衛生法 第6章 第59条、第60条及び第60条 の2に定められた安全衛生教育を実施してください。

- ●本商品は各種の電気配線、電気機器、電気設備などの試験、測定に使用するもので、電気配線、電気機器、電気設備などの特性を改善したり、劣化を防止するものではありません。被試験物、被測定物に万一発生した破壊事故、人身事故、火災事故、災害事故、環境破壊事故などによる事故損害については責任を負いかねます。
- ●本商品の操作、測定における事故で発生した怪我、損害について弊社は一切責任を負いません。また、本商品の操作、測定による建物等への損傷についても弊社は一切責任を負いません。
- ●地震、雷(誘導雷サージを含む)及び弊社の責任以外の火災、第三者による行為、その他の事故、お客様の故意または過失、誤用その他異常な条件下での使用により生じた損害に関して、弊社は一切責任を負いません。
- ●本商品の使用または使用不能から生ずる付随的な損害(事業利益の損失、事業の中断など)に関して、 弊社は一切責任を負いません。
- ●保守点検の不備や、環境状況での動作未確認、取扱説明書の記載内容を守らない、もしくは記載のない 条件での使用により生じた損害に関して、弊社は一切責任を負いません。
- ●弊社が関与しない接続機器、ソフトウエアとの組み合わせによる誤動作などから生じた損害に関して、 弊社は一切責任を負いません。
- ●本商品に関し、いかなる場合も弊社の費用負担は、本商品の価格内とします。

目 次

第1章	一般概要	
	1.1 概 要 ——————————————————————————————————	3
	1.2 特 長 ——————————————————————————————————	3
	1.3 付属品	
	1.3.1 付属コード	4
	1.3.2 その他 —————	4
	1.4 外観および各部の名称	5
	1.5 製品仕様 ————————————————————————————————————	6
	1.6 ブロック図	
	1. 6. 1 R-1115K+2001 形 IP-R1500 ———————————————————————————————————	7
第2章	基本機能	
	2.1 各部の機能	1 1
第3章	試験手順	
	3.1 試験を始める前に	1 5
	3.2 絶縁耐力試験	
	3.2.1 試験準備 ————————————————	1 8
	3.2.2 絶縁耐力試験 ———————	1 9
	3.3 R-1115K形単体での使用方法	
	3.3.1 試験回路結線図 ————— 2	2 1
第4章	付 録	
	4.1 3心ケーブルの分割試験方法	
	4.1.1 心線ごとに分割して試験する方法 ————— 2	2 5
	4.2 試験ケーブル長に対する充電電流	
	4.2.1 試験ケーブル長に対する充電電流の目安 ———— 2	2 6
	4.2.2 絶縁耐力試験電圧の計算方法 ———— 2	2 7
	4.2.3 充電電流の計算方法 2	2 7
	4 2 4 付 表	2.8

	4.3 リアクトルの使用について	
	4.3.1 3700形DR-1115MH仕様	3 0
	4.3.2 3700形DR-1115MH使用時の結線図 —————	3 1
	4.3.3 リアクトル使用時の充電電流の取り扱い ————	3 1
第5章	保 守	
	点 検	3 5
第6章	カスタマーサービス	
	校正試験	
	校正データ試験のご依頼 —————	3 9
	校正試験データ(試験成績書) ————	3 9
	製品保証とアフターサービス	
	保証期間と保証内容 ——————————	4 0
	保証期間後のサービス(修理・校正) —————	4 0
	一般修理のご依頼 —————	4 0
	総合修理のご依頼 ——————	4 0
	修理保証期間 ————————————————————————————————————	4 0
	修理対応可能期間 ————————————————————————————————————	4 0

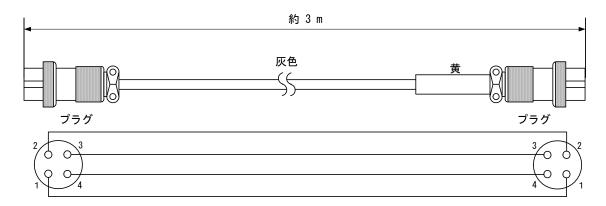
第1章

一般概要

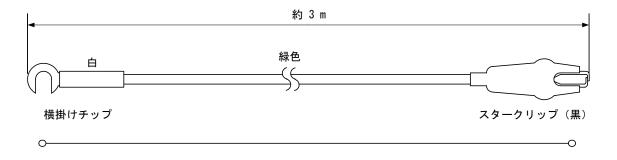
1.1 概 要

本器「耐圧トランスR-1115K」は、高圧電気設備および高圧機器の新増設工事の竣工検査等において実施した絶縁耐力性能が、現地において所定の絶縁耐力性能を維持しているかどうかを検査する交流耐電圧試験用高圧トランスです。

1.2 特 長

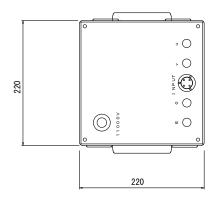

- 移動に便利
 - キャスター付となっているので、現場での移動に便利です。
- 充電電流計付
 - 被試験物に流れる充電電流を測定することができます。
- 小形、軽量
 - 2001 形マルチリレーテスタ IP-R1500 と併用することにより、小形・軽量化されています。
 - ・ 定格の充電電流を超えると、出力が遮断されます。
 - ・ 一次側電圧の調整と、一次側の電圧・電流が測定できます。(IP-R1500 併用時)
 - ・ カウンターにより、試験時間(10分間)が確認できます。(IP-R1500併用時)

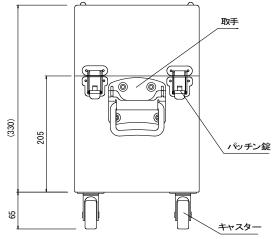
1.3 付属品


1.3.1 付属コード

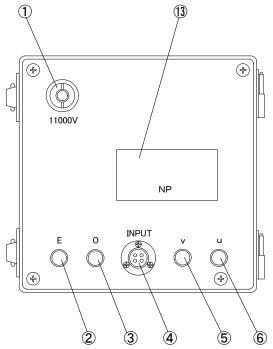
製品 No.	品名	長さ	本 数
	PUN(トランス制御部・トランス部接続)コード	約 3m	1
No. 2903	アースコード	約 3m	1

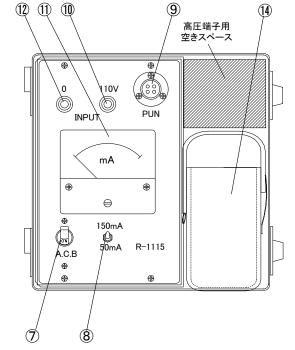
PUN(トランス制御部・トランス部接続)コード


アースコード

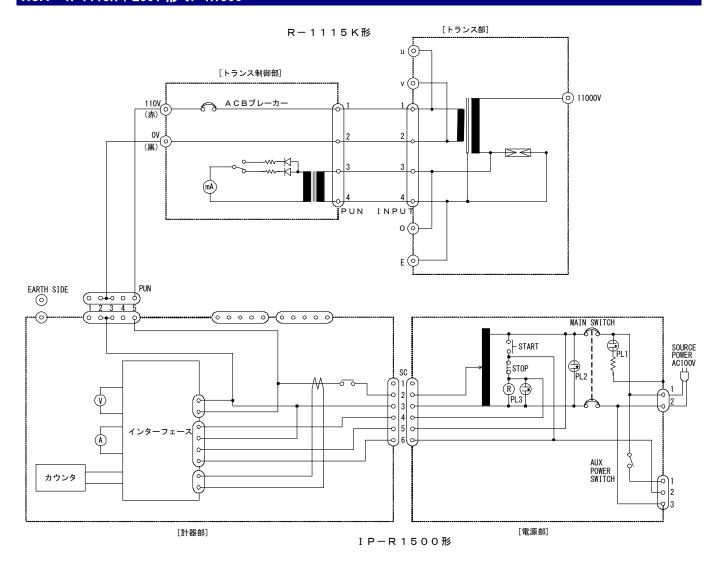


1.3.2 その他


品 名	数量
コード収納ケース	1個
取扱説明書(合格証付き)	1 部
保証書	1 枚


1.4 外観および各部の名称

- ① 11000V 高圧出力端子
- ② E端子
- ③ 0端子
- ④ INPUTコネクタ (4P)
- ⑤ v 端子
- ⑥ u 端子
- 7 ACB.


- ⑧ 電流計レンジ切換スイッチ
- 9 PUNコネクタ (4P)
- ⑩ 110 V端子
- ⑪ 電流計
- 12 0 V 端子
- ③ 銘板
- ⑭ コード収納ケース

1.5 製品仕様

	R-1115K 形
使用環境	0~40°C、80% RH 以下 ただし結露しないこと
適合規格	電気設備技術基準の解釈 第 14, 15, 17, 18 条
質量	約 18kg
外形寸法(W×L×H mm)	220 × 220 × 395
適応リレーテスタ	2001 形 IP-R1500
入力電源周波数	50/60Hz
定格入力電圧	ACO~110V
トランス部	
形式	乾式自冷式
定格出力電圧	ACO~11000V
定格二次電流	AC136mA
定格容量	1. 5kVA
定格時間	10分
巻線比	1:100
二次電圧変動率(定格負荷時)	10%以下
二次電圧偏差(無負荷時)	±5%以内
効 率	90%以上
温度上昇	75℃以下
	※定格出力電圧、定格二次電流、抵抗負荷とした場合の連続 10 分出力に於ける温度上
	昇。
トランス制御部	
充電電流計	ACO~50/150mA 2.5級
回路遮断	150mA 以上(1 次電流 15A)

1.6 ブロック図

1.6.1 R-1115K+2001 形 IP-R1500

第2章 基本機能

2.1 各部の機能

11000V 高圧出力端子

最大電圧 11000V を出力する高電圧出力端子です。 被試験物と、導線により接続します。

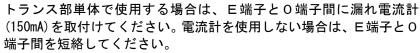
全警告

・高圧出力中は、危険ですので絶対に直接触らないでください。

11000V

E端子

Ε


トランス部の二次側接地極です。 2903 形アースコードで必ず接地と接続します。

0端子

0

トランス部単体で使用する場合の二次側OV端子です。

v 端子、u 端子

V

トランス部単体で使用する場合の一次側入力端子です。 v 端子、u 端子間に AC. 0~110V(15A)を入力します。

INPUT コネクタ

INPUT

PUN(トランス制御部・トランス部接続)コードでトランス制御部の PUN コネクタと接続し、一次電圧の供給と遮断回路を構成します。また、高圧の二次側のもれ電流を電流計回路に接続します。

ACB.

A.C.B

絶縁耐力試験時に、定格電流を超えた時遮断します。

電流計レンジ切換スイッチ

150mA

50mA

電流計の測定レンジを切り換えます。 150mA/50mA の 2 レンジ切換。

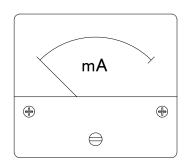
PUN コネクタ

PUN

PUN(トランス制御部・トランス部接続)コードでトランスの INPUT コネクタと接続し、一次電圧の供給と遮断回路を構成します。また、高圧の二次側のもれ電流を、電流計回路に接続します。

INPUT 端子

0


110V

2001 形 IP-R1500 の PUN コネクタと接続します。 (接続コードは IP-R1500 形に付属しています) 2531 耐圧コードを接続します。

電流計

トランス部二次側の電流計です。 150mA/50mA の 2 レンジ切換。

⚠注意

- ・ メーターカバーはアクリル樹脂で成形されているため、冬季の乾燥した時期には、静電気により帯電することがあります。
- ・ メーターの表面を触ると指針が振れる、ゼロ調整ができない等の症状がある場合は、帯電している可能性があるため、測定を行わないでください。
- ・ 製造時に帯電防止剤の塗布により予防処置をおこなっておりますが、経年的に帯電防止効果が薄れた場合に、静電気によりメーターが予期せぬ動作をすることがあります。その際には、帯電防止剤の塗布等の処置を行なってください。(詳しくは、P.35「保守」 の項をご参照ください。)

第3章 試験手順

3.1 試験を始める前に

本器で絶縁耐力試験を行うために、別途 2001 形 IP-R1500 をご用意ください。 以下の手順で作業を進めてください。

設備の準備

手 順	操作
1	遮断器(CB)を遮断し、負荷側を開放します。
2	断路器(DS)を開いて、負荷側を開放します。
3	高圧検電器で母線が無電圧になっていることを確認します。
4	断路器 (DS) 一次側の3線を、短絡アースを使用して確実に接地回路へ接続してください。
	① 引き込みケーブル等の電流を放電させる為
	② 誤通電防止の為
5	短絡アースを取り外し、被試験物(回路)を他回路から分離します。
6	試験区画に、危険区域であることを明示するなど、安全処置を講じてください。
7	絶縁抵抗計で被試験物(回路)の絶縁抵抗値を測定します。

電源極性の確認

手 順	操作	
1	配置図を参照し、各試験装置を配置します。	
2	2001 形 IP-R1500 の主電源スイッチが OFF になっていることを確認します。	
3	接地コードを 2001 形 IP-R1500 の計器部及び電源部のアース端子に接続し、クリップ側を接地に接続します。	
4	電源プラグコードを 2001 形 IP-R1500 の電源コネクタに接続します。	
5	電源プラグコードを AC100V (20A) の電源コンセントに接続します。	
6	 電源フラケコートを ACTOOV (20A) の電源コンセントに接続します。 2001 形 IP-R1500 の極性確認ランプが点灯することを確認します。 警告 ・ 極性確認ランプが消灯している場合は、2533 形電源プラグコードのプラグの接続を逆にして再度確認してください。 	

試験器の結線

手 順	操作
1	試験器の結線図を参照し、結線します。
2	各コネクタ、ターミナルなどに緩みがないことを確認します。

試験器配置及び極性確認

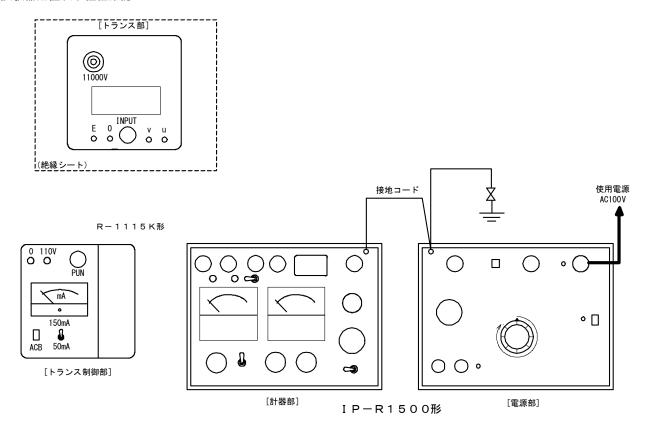


図1 試験器配置及び極性確認

- 極性確認ランプが点灯していない場合、2533 形電源プラグコードのプラグの極性を逆にしてください。 電源極性が正しく取られていないときは、接続及び試験において、アースコード側には非接地側が出 力されます。したがって、アースコード側を接地側に接続または、接触させると電圧電流調整器の位 置によっては非常に大きな電流が流れる場合がありますので注意してください。

<u>^</u>注意

・トランス部はキャスター付となっていますので、試験中に移動しないように安定させてください。

⚠注意

・トランス部は大地と絶縁した状態でご使用ください。(DC1000V/1000MΩ以上)
トランス部のE端子(筺体)は、トランス制御部の電流計を通して接地(大地)へ接続します。このため、トランス部の筺体と大地間で漏れ電流が発生したり、接触していたりすると、トランス制御部の電流計が正常に動作しません。特に、不整地や地面が濡れている場合は、トランス部の下に必ず絶縁シートを敷いて試験を行ってください。

試験器結線図

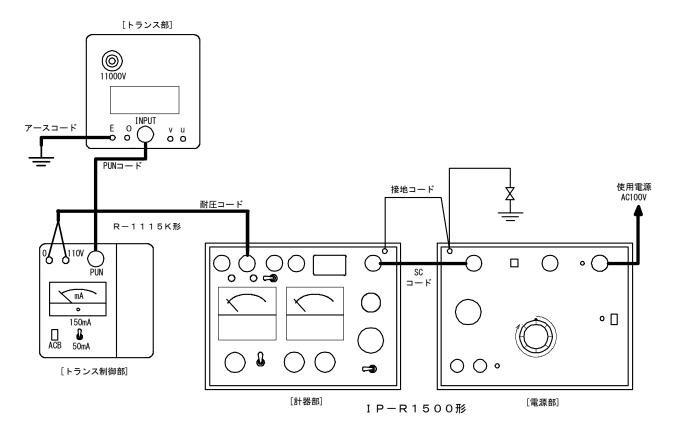


図2 試験器結線図

各コード結線表

コード名	接続箇所		
2514 形接地コード	2001 形 IP-R1500 電源部アース端子	 	
2514 形接地コート	2001 形 IP-R1500 計器部アース端子	按地	
2533 形電源プラグコード	2001 形 IP-R1500 電源コネクタ	電源コンセント	
2512 形 SC コード	2001 形 IP-R1500 電源部 SC コネクタ	2001 形 IP-R1500 計器部 SC コネクタ	
2531 形耐圧コード	2001 形 IP-R1500 計器部 PUN コネクタ	R-1115K トランス制御部 INPUT ターミナル	
2903 形アースコード	R-1115K トランス部 E 端子	接地	
PUN(トランス制御部・トラ	D 111EV L ニ > . ラ 生 佐田女区 DUN 5世 フ		
ンス部接続)コード	R-1115K トランス制御部 PUN 端子	R-1115K トランス部 INPUT コネクタ	

3.2 絶緣耐力試験

絶縁耐力試験は、電気設備の絶縁強度が、通常使用する電圧のほか地絡事故や開閉サージなどの異常電圧に対して、絶縁破壊事故を起こさず使用できるかどうかを試験します。

この試験器は、対接地間に高電圧を出力することにより、電気設備技術基準の解釈 第 14, 15, 17, 18 条に基づいた、最大使用電圧 7000V 以下の電路及び機器の絶縁耐力試験を行うことができます。

3.2.1 試験準備

各スイッチ及びツマミを以下の様に設定してください。

2001 形 IP-R1500 電源部

名 称	位置
電圧電流調整器	O位置
主電源スイッチ	0FF
補助電源スイッチ	0FF
OCR出力電流切換スイッチ	20 Ω

2001 形 IP-R1500 計器部

名 称	位 置
試験項目切換スイッチ	PUN
電流出力切換スイッチ	TEST
接点構造切換スイッチ	0FF
電圧位相反転スイッチ	NORM (通常)
電圧計レンジ切換スイッチ	150V (12kV)
電流計レンジ切換スイッチ	25A
R相/T相切換スイッチ	R 相

R-1115K

名 称	位置
電流計レンジ切換スイッチ	150mA
ACB(オートサーキットブレーカ)	0FF(下部)

3.2.2 絶縁耐力試験

被試験物(回路)	手 順	操作
との接続	1	被試験物(回路)と R-1115K の 11000V 高圧出力端子を、導線で架空配線により接続します。
		 (♪ 注意 導線は極力短く、直線的に、地面その他構造物などに接触しないように接続してください。導線が地面その他構造物などに接触しますと、この部分にも絶縁耐力試験を行うことになり、正確な試験ができません。 導線に必要な長さなどは現場により異なりますので、本器には高圧出力コードを付属していません。事前に準備し、現場で調整してください。
	2	トランス制御部の ACB を ON(上部)にします。

本器の操作

手 順	操作						
1	電源部	主電源スイッチを ON にします。					
2	電源部	START を押します。					
3	電源部	電圧電流調整器を時計方向にゆっくりと回し、計器部の電圧計を見ながら、 試験電圧に合わせ、そのまま10分間絶縁耐力試験を行います。 ・ 試験電圧10350V時 —— 電圧計指示103.5V ・ 試験電圧 5175V時 —— 電圧計指示 51.75V NOTE ・ 試験中に絶縁破壊が発生し、定格電流(一次側15A二次側 150mA)を超えた場合、遮断電流値により試験電圧が遮断されます。その時は、即時、電圧電流調整器を必ず0の位置に戻					
		します。					
4	電源部	10 分間異常がなければ、電圧電流調整器を0の位置に戻します。					
		注意 ・ 高電圧を発生したまま、急に STOP スイッチを押したり、主電源スイッチを OFF にすると、異常電圧が発生し被試験物が絶縁破壊することがあります。					
5	電源部	STOP を押します。					
6	電源部	主電源スイッチを OFF にします。					
7	被試験物	短絡放電棒(MTS-1WまたはMTS-3W)などにより、充電電荷を完全に放電します。					

結線図 [トランス部] 11000V (※2) INPUT アースコード 被試験物 使用電源 AC100V 接地コード (※1) 耐圧コード R-1115K形 SC コード PUN 0 🔊 mA ° [150mA ACB 50mA \bigcirc \bigcirc \circ [トランス制御部] [計器部] [電源部] IP-R1500形

図2 絶縁耐力試験

- ・ 本器は対接地間に高電圧を出力します。2514 形接地コード(※1)及びアースコード(※2)は必ず接地へ接続してください。
- ・ 極性確認ランプが点灯していない場合、アースコード側には非接地側が出力されています。したがって、OV 端子側コードを接地側に接続または接触させると、電圧電流調整器の位置によっては非常に大きな電流が流れる場合がありますので注意してください。

3.3 R-1115K 形単体での使用方法

R-1115K は、単体で使用するためのターミナル端子を装備しています。電圧調整器、電圧計、電流計などを接続して絶縁耐力試験を行うことができます。

∕ 警告

• R-1115K を単体で使用される場合は、高電圧を取扱う作業に対して十分な知識と経験が必要です。安全には十分配慮して試験してください。

3.3.1 試験回路結線図

試験回路結線図 [トランス制御部を使用する場合]

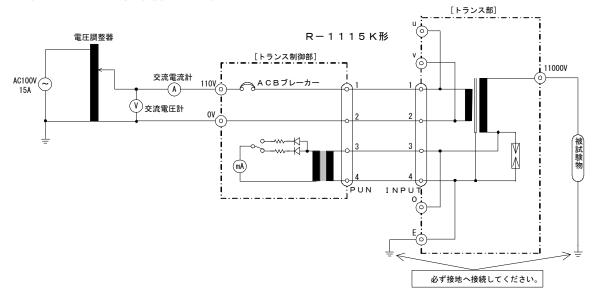


図1 試験器結線図 [トランス制御部を使用する場合]

試験回路結線図 [トランス制御部を使用しない場合]

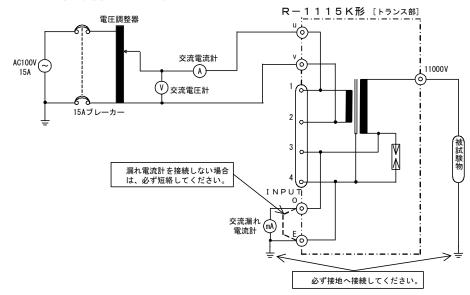


図2 試験器結線図 [トランス制御部を使用しない場合]

第4章付 録

4.1 3心ケーブルの分割試験方法

CVTなどの3心ケーブルの絶縁耐力試験を行う場合、3心一括で試験を行えば1度の試験で終了しますが、3心一括では耐圧トランスの容量が足りない場合は、1心または2心に分割して試験を行うことで、3心一括の場合よりも長いケーブルを試験することができます。

4.1.1 心線ごとに分割して試験する方法

下図を参考に分割して試験を行うことができます。

<u>⚠</u>注意

・ 但し、3線一括以外で相間にVTがある場合は不可です

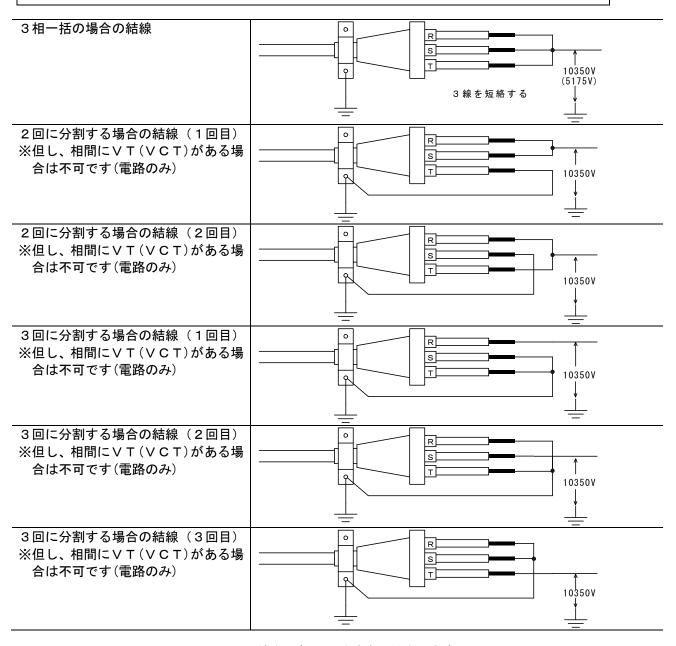
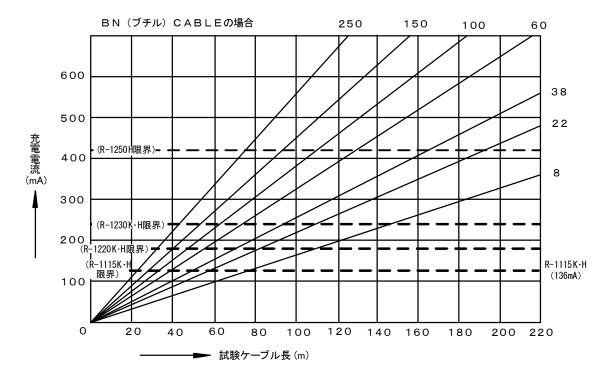


図1 心線を分割して試験する場合の参考図


/ 注意

- ・ ケーブル相間にVT(VCT)がある場合は、ケーブル分割での耐圧試験は不可です。
- 気中開閉器(PAS)の試験時、VT内蔵形のケーブル分割での耐圧試験は不可です。
- VTのある相間は必ず短絡して、耐電圧の試験電圧を印加します。

4.2 試験ケーブル長に対する充電電流

電力ケーブルの絶縁耐力試験を行う場合、ケーブルの太さにより試験可能なケーブル長が異なります。 試験の前に、ケーブルの太さと長さから標準的な充電電流を知り、必要な試験容量を割り出し、試験器材を 選定しておくことが必要です。

4.2.1 試験ケーブル長に対する充電電流の目安

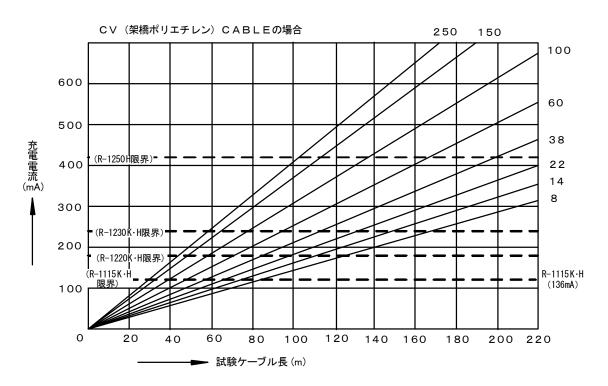


図1 6 k V用ケーブル三相一括の場合の充電電流グラフ(50 Hz)

4.2.2 絶縁耐力試験電圧の計算方法

電気設備技術基準の解釈 第14条 より抜粋

規格 最大使用電圧が7,000V以下の電路については、絶縁耐力試験の試験電圧は、最大使用電圧の 1.5倍の電圧を、電路と大地との間に連続して10分間加えてこれに耐えること。

最大使用電圧

公称電圧の1.15/1.1倍とする。

但し、経験などでこの値を超えることが明確な場合は、その最大電圧をもって最大使用電 圧とする。

公称電圧 6600V × 1.15/1.1=6900V(最大使用電圧)

公称電圧 3300V × 1.15/1.1=3450V(最大使用電圧)

試験電圧

最大使用電圧の1.5倍

公称電圧6600Vの電路 6900V×1.5=10350V(試験電圧)

公称電圧3300Vの電路 3450V×1.5=5175V(試験電圧)

4.2.3 充電電流の計算方法

1 km 当たりの静電容量 C [F/km] のケーブルに試験電圧 E [V] を印加したときの充電電流

$$Ic = \frac{E}{Z} = \frac{E}{1} = \omega CE \quad [A/km]$$

 Ic: 充電電流 [A]

 E: 試験電圧 [V]

 C: 静電容量 [F/km]

Z:ケーブルインピーダンス

ω: 2 π f f:周波数 [Hz]

被試験ケーブルに対する試験可能なケーブル長

6600 V3 心一括シース形架橋ポリエチレンケーブル 38□を例として(50Hz の場合) 静電容量の計算式(単心ケーブル、S L ケーブル、各心遮蔽ケーブルの場合)

$$C = \frac{0.02413 \times \varepsilon}{\log_{10} \frac{D}{d}} \quad [\mu \, \text{F/km}]$$

C: 静電容量 [μF/km]
D: 絶縁体外径 [mm]
d: 導体外径 [mm]

ε: 誘電率 (架橋ポリエチレンは2.3)

$$C = \frac{0.02413 \times \varepsilon}{\log_{10} \frac{D}{d}} = \frac{0.02413 \times 2.3}{\log_{10} \frac{15.8}{7.8}} = \frac{0.055499}{\log_{10} 2.02564} = 0.181 \text{ [}\mu\text{F/km]}$$

この値は心線あたりの値であり、ケーブルの撚り込み率を2%とすると、3 心一括では3.06倍になる。 C=0.181 [μ F/km] ×3.06=0.000000554 [F/km]

 $Ic = \omega CE = 2 \times 3.14 \times 50 \times 0.000000554 \times 10350 = 1.80 \text{ [A/km]}$

R-1115K形の定格二次電流136mAなので、試験可能なケーブル長は、

 $0.136 \div 1.80 = 0.0755$ [km] = 75.5 [m]

この値は理論値となりますので、実際の現場ではケーブルの新・旧などにより変化しますので、余裕を持った試験器をご用意ください。

4.2.4 付 表

JIS C 3606-1987 高圧架橋ポリエチレンケーブル

3300V 3芯一括シース形架橋ポリエチレンケーブル抜粋

導 体			絶縁体	シース	導 体	絶 縁	参考			
公称	構 成 (素線数/ 素線径)	外径	厚き	厚さ	抵抗	抵抗	静 電 容 量 (常温)	概算質量 kg/km		標準
mm ²	mm 又は形状	mm	mm	mm	(20 °C) Ω/km	MΩkm	μ F/km	ビニル シース	ホ [°] リエチ レンシース	m
8	7/1. 2	3. 6	- 2.5	2. 1	2. 36	2500	0. 21	740	685	
	円形圧縮	3. 4		2. 1	2. 34	2500	0. 21	730	680	300
1.4	7/1.6	4. 8	2. 5	2. 2	1. 33	2500	0. 26	1020	940	300
14	円形圧縮	4. 4		2. 2	1. 34	2500	0. 24	1010	925	
00	7/2.0	6. 0	2. 5	2. 3	0. 840	2500	0. 30	1280	1180	200
22	円形圧縮	5. 5		2. 3	0. 849	2500	0. 28	1240	1140	300
38	7/2. 6	7. 8	2.5	2. 5	0. 497	2000	0. 37	2000	1980	300
	円形圧縮	7. 3		2. 5	0. 491	2000	0. 25	1980	1870	300
60	19/2.0	10. 0	- 3.0	2. 8	0. 309	2000	0. 38	2860	2710	300
	円形圧縮	9. 3		2. 7	0. 311	2000	0. 36	2740	2600	300
100	19/2. 6	13. 0	3. 0	3.0	0. 184	1500	0. 47	4370	4180	200
	円形圧縮	12. 0		2. 9	0. 187	1500	0. 44	4150	3970	300
150	37/2. 3	16. 1	3. 0	3. 3	0. 120	1500	0. 55	6250	6040	300
150	円形圧縮	14. 7		3. 2	0. 124	1500	0. 52	5880	5680	300
200	37/2. 6	18. 2	3. 5	3.6	0. 0940	1500	0. 54	7970	7680	200
	円形圧縮	17. 0		3. 5	0. 0933	1500	0. 51	7740	7460	200
250	61/2.3	20. 7	3. 5	3.8	0. 0736	1500	0. 59	10090	7940	200
	円形圧縮	19. 0		3. 5	0. 0754	1500	0. 55	9490	9160	200
325	61/2.6	23. 4	- 3.5	4. 0	0. 0576	1000	0. 66	12300	11860	200
	円形圧縮	21. 7		3. 9	0. 0579	1500	0. 61	11780	11360	200

JIS C 3606-1987 高圧架橋ポリエチレンケーブル

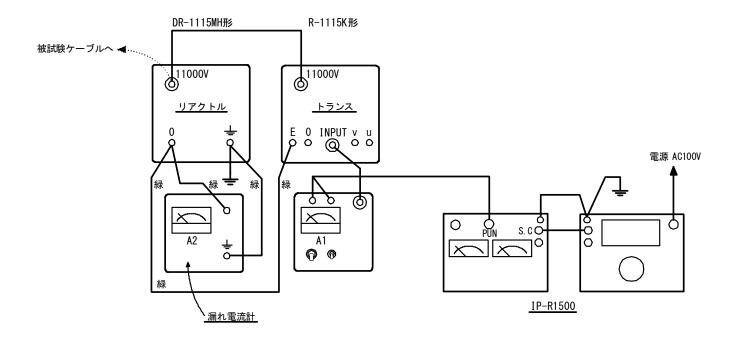
6600V 3芯一括シース形架橋ポリエチレンケーブル抜粋

導 体			絶縁体	シース	導 体	絶 縁	参考			
公称断面積	構 成 (素線数/ 素線径)	外径	厚さ	厚さ	抵抗	抵抗	静 電 容 量 (常温)	概算質量 kg/km		標準条長
2	mm 又は形状				(20 °C)	MOL	F /1	ビニル シース	木° リエチ レンシース	
mm²	7/1 0	mm	mm	mm	Ω/km	MΩkm	μF/km	1100	1000	m
8	7/1. 2	3. 6	4. 0	2. 4	2. 36	2500	0. 21	1190	1090	300
	円形圧縮	3. 4		2. 4	2. 34	2500	0. 21	1180	1080	
14	7/1.6	4. 8	4. 0	2. 5	1. 33	2500	0. 25	1500	1390	300
	円形圧縮	4. 4		2. 5	1. 34	2500	0. 24	1480	1370	
22	7/2. 0	6. 0	4. 0	2. 6	0. 840	2500	0. 28	1820	1600	300
22	円形圧縮	5. 5	4. 0	2. 5	0. 849	2500	0. 27	1780	1560	
38	7/2. 6	7. 8	4. 0	2. 8	0. 497	2000	0. 33	2470	2320	300
30	円形圧縮	形圧縮 7.3		2. 7	0. 491	2000	0. 32	2430	2290	
60	19/2. 0	10. 0	4. 0	2. 9	0. 309	2000	0. 39	3380	3210	300
00	円形圧縮	9. 3	4. 0	2. 9	0. 311	2000	0. 37	3280	3110	
100	19/2. 6	13. 0	4. 0	3. 2	0. 184	1500	0. 47	4950	4730	200
	円形圧縮	12. 0		3. 1	0. 187	1500	0. 45	4670	4470	200
150	37/2. 3	16. 1	4. 0	3. 5	0. 120	1500	0. 55	6900	6310	200
	円形圧縮	14. 7		3. 3	0. 124	1500	0. 52	6420	5870	200
200	37/2. 6	18. 2	4. 5	3. 7	0. 0940	1500	0. 54	8620	8280	150
	円形圧縮	17. 0		3. 6	0. 0933	1500	0. 51	8330	8000	
250	61/2.3	20. 7	4. 5	4. 0	0. 0736	1500	0. 59	10700	10030	150
	円形圧縮	19. 0		3. 8	0. 0754	1500	0. 55	10020	9390	
325	61/2.6	23. 4	4. 5	4. 2	0. 0576	1000	0. 66	13670	13250	150
	円形圧縮	21. 7		4. 2	0. 0579	1500	0. 61	12990	12590	

4.3 リアクトルの使用について

交流の絶縁耐力試験では、容量性の負荷(電力ケーブル)を試験する場合に、負荷(C)と並列にリアクトル(L)を接続することで、試験可能なケーブル長を長くすることができます。

当社では、トランスと同容量のリアクトルを別売オプションとして準備しており、リアクトルの台数を増やすことにより、トランス容量に対してリアクトルのn台数に対して(n+1)倍の容量試験に対応することができます。


また、リアクトルはあくまでも容量性成分と並列に接続されて初めて成立しますので、負荷容量に適した台数でご使用いただくよう、ご注意ください。

4.3.1 3700形DR-1115<u>MH 仕様</u>

	DR-1115MH 形					
使用環境	0~40°C、80% RH以下 ただし結露しないこと					
質量	約 16kg					
外形寸法(W×L×H mm)	220 × 220 × 350					
適応リレーテスタ	IP-R1500+R-1115K(または R-1115H)					
定格周波数	50/60Hz					
定格電圧	AC11000V					
	50Hz 時	60Hz 時				
定格電流	136mA (※1)	114mA (※2)				
10350V における電流	128mA	107mA				
定格容量	1. 5kvar	1. 25kvar				
インダクタンス	257H±5%					
騒 音(本体より30cmの距離)	65dB 以下					
電流計	F. S. 300mA 2. 5 級					
冷却方式	乾式自冷式					

※1 50Hzに於ける定格電流 (mA)	※2 60Hzに於ける定格電流 (mA)
$I = \frac{V}{Z} = \frac{V}{\omega L} = \frac{V}{2\pi f \cdot 257}$	$I = \frac{V}{Z} = \frac{V}{\omega L} = \frac{V}{2\pi f \cdot 257}$
$V=11000~V$ に於ける電流 $\omega=2\pi f$ $f=50~Hz$ より	$V=11000$ V に於ける電流 $\omega=2\pi f$ $f=60~Hz$ より
$\omega = 314$ $I = \frac{11000}{314 \times 257} = \frac{11000}{80698} = 136 (mA)$ $V = 10350 \ V$ に於ける電流 $I = \frac{10350}{80698} = 128 (mA)$	$I = \frac{11000}{376.8 \times 257} = \frac{11000}{96837.6} = 113.6 = 114 (mA)$ $V = 10350 \ V$ に於ける電流 $I = \frac{10350}{96837.6} = 106.8 = 107 (mA)$

4.3.2 3700形 DR-1115MH使用時の結線図

4.3.3 リアクトル使用時の充電電流の取り扱い

R-1115K 耐圧トランスの電流計

A1 トランスの出力電流を指示します。

3700 形 DR-1115MH 耐圧リアクトルの電流計

A2 被試験物(回路)に流れる充電電流を指示します。

リアクトルを複数台ご使用される場合は、充電電流に見合った電流計と交換してください。

第5章 保 守

保 守

検

付属品の確認 構造の点検

付属品の章を参照し、付属品の有無を確認します。

操作パネルを点検し、部品(ネジ、ツマミ、ノブ、端子)、ケースの変形が無いか 調べます。

本体指示計器を点検し、ひび割れ、指針曲がり、破損が無いか調べます。

試験コードを点検し、亀裂、つぶし、断線が無いか調べます。

本体に電源を入れ、動作の確認をします。

メーターカバー について

本製品のメーターカバーには、帯電防止剤を塗布していますので、清掃の際には乾 **のクリーニング** いた布等で強く擦らないでください。

> 静電気により帯電した場合は、市販の帯電防止剤または、中性洗剤を柔らかい布等 に少量含ませ軽く拭いてください。

> 有機溶剤を含む洗剤は絶対に使用しないでください。変形・変色の恐れがあります。

第6章 カスタマーサービス

カスタマーサービス

校正試験

校正データ試験 のご依頼

R-1115K形の試験成績書、校正証明書、トレーサビリティは、有償にて発行いたします。お買いあげの際にお申し出ください。アフターサービスに於ける校正データ試験のご依頼は、本器をお客様が校正試験にお出ししていただいた時の状態で測定器の標準器管理基準に基づき校正試験を行い試験成績書、校正証明書、トレーサビリティをお客様のご要望(試験成績書のみでも可)に合わせて有償で発行いたします。

校正証明書発行に関しては、試験器をご使用になられているお客様名が校正証明書に記載されますので代理店を経由される場合は、当社に伝わるようにご手配願います。

校正データ試験のご依頼時に点検し故障個所があった場合は、修理・総合点検として校正データ試験とは別に追加の修理・総合点検のお見積もりをさせていただき、ご了承をいただいてから修理いたします。

本器の校正に関する試験は、本器をお買い求めの際にご購入された付属コード類も含めた試験になっています。校正試験を依頼される場合は、付属コード類を本体につけてご依頼ください。

校正試験データ (試験成績書)

校正試験データとして試験成績書は、6ヶ月間保管されますが原則として再発行致しません。修理において修理後の試験成績書が必要な場合は、修理ご依頼時にお申し付けください。修理完了して製品がお客様に御返却後の試験成績書のご要望には、応じかねますのでご了承ください。

校正データ試験を完了しました校正ご依頼製品には、「校正データ試験合格」シールが貼られています。

製品保証とアフターサービス

保証期間と保証内容 納入品の保証期間は、お受け取り日(着荷日)から1年間といたします。(修理 は除く)この期間中に、当社の責任による製造上及び、部品の原因に基づく故障 を生じた場合は、無償にて修理を行います。ただし、天災及び取扱ミス(定格以 外の入力、使い方や落下、浸水などによる外的要因の破損、使用・保管環境の劣 悪など)による故障修理と校正・点検は、有償となります。また、この保証期間 は日本国内においてのみ有効であり、製品が輸出された場合は、保証期間が無効 となります。また、当社が納入しました機器のうち、当社以外の製造業者が製造 した機器の保証期間は、本項に関わらず、該当機器の製造業者の責任条件による ものといたします。

ス(修理・校正)

保証期間後のサービ 有償とさせていただきます。当社では、保証期間終了後でも高精度、高品質でご 使用頂けるように万全のサービス体制を設けております。アフターサービス(修 理・校正)のご依頼は、当社各営業所又は、ご購入された代理店に製品名、製品 コード、故障・不具合状況をお書き添えの上ご依頼ください。修理ご依頼先が不 明の時は、当社各営業所にお問い合わせください。

一般修理のご依頼

お客様からご指摘いただいた故障個所を修理させていただきます。点検の際にご 依頼を受けた修理品が仕様に記載された本来の性能を満足しているかチェック し、不具合があれば修理のお見積もりに加え修理させていただきます。

(「修理・検査済」シールを貼ります。)

総合修理のご依頼

点検し故障個所の修理を致します。点検の際にご依頼を受けた修理品が仕様に記 載された本来の性能を満足しているか総合試験によるチェックを行い、不具合が あれば修理させていただきます。さらに消耗部品や経年変化している部品に関し て交換修理(オーバーホール)させていただきます。修理依頼時に総合試験をご 希望されるときは、「総合試験」をご指定ください。校正点検とは、異なります ので注意してください。

(「総合試験合格」シールを貼ります)

修理保証期間

修理させていただいた箇所に関して、修理納入をさせていただいてから6ヶ月保 証させていただきます。

修理対応可能期間

修理のご依頼にお応えできる期間は、基本的に同型式製品の生産中止後7年間と なります。また、この期間内に於いても市販部品の製造中止等、部品供給の都合 により修理のご依頼にお応え致しかねる場合もございますので、ご了承くださ い。